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Chapter 1

Introduction

The simulation of complex physical phenomena using numerical methods has become an in-

valuable part of modern science and engineering. The utility of these simulations has led to

the evolution of ever more efficient and accurate methods. In particular, numerous research

efforts have been aimed at developing high-order accurate algorithms for solving partial

differential equations. These efforts have led to many types of numerical schemes, including

higher-order finite difference [33, 59, 56], finite volume [7, 57], and finite element [8, 20, 6, 40]

methods for both structured and unstructured meshes. Despite these developments, in ap-

plied aerodynamics, most computational fluid dynamics (CFD) calculations are performed

using methods that are at best second-order accurate. These methods are very costly, both

in terms of computational resources and time required to reach engineering-required ac-

curacy. Higher-order methods are of interest because they have the potential to provide

significant reductions in the time necessary to obtain accurate solutions. Motivated by

this potential, the goal of this thesis is to contribute to the development of a higher-order

CFD algorithm which is practical for use in an applied aerodynamics setting. Specifically,

the thesis details a high-order discontinuous Galerkin (DG) discretization of the compress-

ible Navier-Stokes equations and a multigrid solution procedure for the resulting nonlinear

discrete system.

1.1 Motivation

While CFD has matured significantly in past decades, in terms of time and computational

resources, large aerodynamic simulations of aerospace vehicles are still very expensive. In

this applied aerodynamics context, the discretization of the Euler and/or Navier-Stokes

equations is performed almost exclusively by finite volume methods. The evolution of these

methods, including the incorporation of upwinding mechanisms [51, 46, 52, 47, 53] and

13



advances in solution techniques for viscous flows [4, 41, 37, 38], has made the simulation of

complex problems possible. However, the standard algorithms remain at best second-order

accurate, meaning that the error decreases as O(h2).

Moreover, while these methods are used heavily in aerospace design today, the time

required to obtain reliably accurate solutions has hindered the realization of the full potential

of CFD in the design process. In fact, it is unclear if the accuracy of current second-order

finite volume methods is sufficient for engineering purposes. The results of the two AIAA

Drag Prediction Workshops (DPW) [35, 31] suggest that the CFD technology in use today

may not produce adequate accuracy given current grids. Numerous authors [54, 32, 22] have

shown that the spread of the drag results obtained by the DPW participants is unacceptable

given the stringent accuracy requirements of aircraft design.

This problem could be alleviated by the development of a high-order CFD algorithm.

Specifically, a high-order method could reduce the gridding requirements and time neces-

sary to achieve a desired accuracy level. Traditional finite volume methods rely on extended

stencils to achieve high-order accuracy, which leads to difficulty in achieving stable iterative

algorithms and higher-order accuracy on unstructured meshes. Alternatively, an attractive

approach for achieving higher-order accuracy is the discontinuous Galerkin (DG) formu-

lation in which element-to-element coupling exists only through the fluxes at the shared

boundaries between elements.

Recently, Fidkowski and Darmofal [22, 23] developed a p-multigrid method for the solu-

tion of high-order, DG discretizations of the Euler equations of gas dynamics. They achieved

significant reductions in the computational time required to obtain high accuracy solutions

by using high-order discretizations rather than highly refined meshes. This thesis describes

the extension of the algorithm introduced by Fidkowski and Darmofal to viscous flows.

1.2 Background

1.2.1 Higher-Order Methods

The first high-order accurate numerical methods were spectral methods [24, 15], where the

solution of a differential equation is approximated over the entire domain using a high-order

expansion. Choosing the expansion functions properly, one can achieve arbitrarily high-

order accuracy. However, because of the global nature of the expansion functions, spectral

methods are typically limited to very simple domains with simple boundary conditions.

Motivated by the prospect of obtaining the rapid convergence rates of spectral methods

with the greater geometric versatility provided by finite element methods, researchers in

14



the early 1980s introduced the p-type finite element method. In the p-type finite element

method, the grid spacing, h, is fixed, and the interpolation order, p, is increased to drive

the error down. In 1981, Babuska et al. [6] applied this method to elasticity problems.

They concluded that based on degrees of freedom, the rate of convergence of the p-type

method cannot be slower than that of the h-type and that, in cases with singularities

present at vertices, the convergence rate of the p-type is twice as fast. In 1984, Patera [40]

introduced a variant p-type method, known as the spectral element method, and used it to

solve the incompressible Navier-Stokes equations for flow in an expanding duct. Korczak

and Patera [30] later extended this method to more general, curved geometries.

Finite element methods are attractive for achieving high-order accuracy because, for

smooth problems, the order of accuracy is controlled by the order of the solution and test

function spaces. However, it is well known that standard, continuous Galerkin methods are

unstable for the convection operator [55]. Thus, the solution of the Euler or Navier-Stokes

equations requires the addition of a stabilization term, like that used in the Streamwise

Upwind Petrov Galerkin method [27].

Also motivated by the possibility of obtaining spectral-like results in a more flexible geo-

metric framework, Lele [33] introduced up to tenth-order, compact, finite difference schemes.

Using a Fourier analysis of the differencing errors, he showed that the compact, high-order

schemes have a larger resolving efficiency, where resolving efficiency is the fraction of waves

that are resolved to a given accuracy, than traditional finite difference approximations. This

work was extended to more general geometries by Visbal and Gaitonde [56], who used up to

sixth-order, compact finite difference discretizations to solve the compressible Navier-Stokes

equations on curvilinear meshes.

Further work for the compressible Navier-Stokes equations on structured meshes is pre-

sented by Zingg et al. [59], who compared the results of a fourth-order central difference

discretization to a number of lower-order schemes. One of their results is shown in Figure 1-

1. The higher-order scheme is seen to dramatically outperform the second-order (Matrix,

CUSP, and Roe) methods in terms of number of nodes required to accurately compute the

drag on an airfoil in subsonic flow.

In an unstructured, finite volume context, Barth [7] introduced the k-exact reconstruc-

tion method, which is based on a least-squares reconstruction procedure that requires an

extended stencil. As noted above, the large stencil typically required is a limiting factor

in the development and application of higher-order finite volume methods. Alternatively,

Wang et al. [57] has recently developed the spectral volume method, where each cell (spectral

volume) in the domain is subdivided into additional control volumes. The state averages

within these control volumes are used to build a higher-order reconstruction within the

15
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Figure 1-1: Drag results for subsonic NACA 0012 test case. Taken from Zingg et al. [59].
Reproduced with permission.

spectral volume. To increase the order of accuracy, additional degrees of freedom are added

by further subdividing each spectral volume. Thus, at the spectral volume level, the scheme

has a nearest neighbor stencil regardless of the order of accuracy.

1.2.2 Discontinuous Galerkin Methods

In 1973, Reed and Hill [44] introduced the DG method for the neutron transport equation.

Since that time, development of the method has proceeded rapidly. Cockburn et al. present

an extensive history of DG methods in [16]. Highlights of this history are mentioned here.

In 1974, LeSaint and Raviart [34] derived the first a priori error estimates of the DG

method for linear hyperbolic problems. They proved a rate of convergence of O(hp) in

the L2(Ω)-norm. Johnson and Pitkaranta [29] and Richter [45] later improved upon these

original estimates. Johnson and Pitkaranta proved that, in the most general case, O(hp+1/2)

is the optimal convergence rate, while Richter showed that, assuming the characteristic

direction is not exactly aligned with the grid, O(hp+1) can be obtained.

A breakthrough in the application of DG methods to nonlinear hyperbolic problems

was made by Cockburn and Shu [18], who introduced the Runge Kutta Discontinuous

Galerkin (RKDG) method. The original RKDG method uses an explicit TVD second-

order Runge Kutta scheme introduced by Shu and Osher [49]. In 1989, Cockburn and

Shu [17] generalized the method to be higher-order in time as well as space. Cockburn and

Shu summarize the RKDG method, including the details of a generalized slope limiter for

controlling oscillations, in [20].

Independent of the above work, Allmaras [1] and Allmaras and Giles [3] developed a

second-order DG scheme for the 2-D Euler equations. Their method is the extension of
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van Leer’s method of moments [50] from the 1-D, linear wave equation to the 2-D Euler

equations. Thus, it requires that state and gradient averages be computed at each cell to

allow linear reconstruction of the state variables. Halt [25] later extended this work to be

higher-order accurate.

For elliptic operators, in the late 1970s and early 1980s, Arnold [5] and Wheeler [58]

introduced discontinuous finite element methods known as penalty methods. While these

schemes were not developed as DG methods, they have now been brought into the unified

DG framework [21]. More recently, many researchers [13, 9, 8, 20, 19, 42] have applied

DG methods to diffusive operators. One procedure, pioneered by Bassi and Rebay [9, 11]

and generalized by Cockburn and Shu [20, 19], is to rewrite a second-order equation as

a first-order system and then discretize the first-order system using the DG formulation.

This method has been successfully applied to the compressible Navier-Stokes equations and

Reynolds Averaged Navier-Stokes equations by Bassi and Rebay [11, 10]. Arnold et al. [21]

provides a unified analysis, including error estimates, of most of the DG methods available

for elliptic operators.

1.2.3 Multigrid for Aerodynamic Applications

The use of multigrid for the solution of the Euler equations was pioneered by Jameson in

1983, who demonstrated a significant convergence speedup in the solution of 2-D transonic

flows on structured meshes [28]. Since that time, there have been many advances in the ap-

plication of multigrid methods to aerodynamic problems. For example, Mavriplis [36] intro-

duced a method of performing multigrid on unstructured triangular meshes; Allmaras [2] has

examined the requirements for the elimination of all error modes; and Pierce and Giles [41]

presented efficient methods for the Euler and Navier-Stokes equations. Specifically for DG

discretizations, in 2002, Bassi and Rebay [12] introduced a semi-implicit p-multigrid algo-

rithm and used it to solve the DG discretization of the Euler equations.

This work builds directly on that of Fidkowski and Darmofal [22, 23], who developed a

p-multigrid algorithm with element-line Jacobi relaxation for solving the DG discretization

of the Euler equations. They were able to achieve p-independent asymptotic convergence

rates as well as significant time savings versus a simpler element Jacobi preconditioned p-

multigrid scheme. The multigrid solver implemented by Fidkowski is used here with only

minor modification to the element coupling criterion used by the line creation procedure.
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1.3 Outline of Thesis

This thesis presents a multigrid solution technique for a high-order DG discretization of

the compressible Navier-Stokes equations. The equations are discretized using the second

method of Bassi and Rebay (BR2) [11, 10], which is described in detail in Chapter 2.

Chapter 3 describes the multigrid algorithm developed by Fidkowski and Darmofal [22, 23]

and its extention to high Reynolds number viscous flows. Stability analysis, presented in

Chapter 4, shows that the single-step element and element-line Jacobi relaxation schemes are

stable independent of p and flow conditions. Finally, 2-D laminar results shown in Chapter 5

demonstrate that higher-order schemes provide significant savings in terms of the number

of elements, degrees of freedom, and time required to achieve a desired accuracy level.
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Chapter 2

Discontinuous Galerkin

Discretization

This chapter develops a high-order accurate discretization of the compressible Navier-Stokes

equations. The discretization of the inviscid terms uses the standard DG formulation, which

relies on Riemann solvers for the calculation of the inter-element fluxes. The bulk of the

chapter focuses on the discretization of the viscous terms, which is done using the second

formulation of Bassi and Rebay (BR2) [11, 10].

2.1 DG for Euler

The two-dimensional Euler equations in strong, conservation form are given by

ut + ∇ · Fi(u) = 0, (2.1)

where u is the conservative state vector,

u = (ρ ρu ρv ρE)T ,

Fi = (Fx
i ,Fy

i ) is the inviscid flux vector,

Fx
i =





ρu

ρu2 + p

ρuv

ρuH




, Fy

i =





ρv

ρuv

ρv2 + p

ρvH




,

19



ρ is the fluid density, u and v are velocity components, p is the pressure, and E is the

total internal energy per unit mass. Thus, the total enthalpy per unit mass, H, is given by

H = E + p/ρ, and, assuming the fluid obeys the perfect gas equation of state, the pressure

is p = (γ − 1)ρ[E − (u2 + v2)/2], where γ is the ratio of specific heats of the fluid.

Multiplying Eqn. 2.1 by a vector-valued test function v and integrating by parts, one

obtains the weak formulation:

∫

Ω

vTut dx −
∫

Ω

∇vT · Fi dx +

∫

∂Ω

vTFi · n̂ ds = 0, ∀v ∈ H1(Ω),

where Ω is the domain, ∂Ω is its boundary, and n̂ is the outward pointing unit normal. To

discretize in space, define Vp
h to be the space of discontinuous vector-valued polynomials

of degree p on a subdivision Th of the domain into non-overlapping elements such that

Ω =
⋃

κ∈Th
κ. Thus, the solution and test function space is defined by

Vp
h = {v ∈ L2(Ω) | v|κ ∈ P p, ∀κ ∈ Th}, (2.2)

where P p is the space of polynomial functions of degree at most p. The discrete problem

then takes the following form: find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

{∫

κ
vT

h (uh)t dx −
∫

κ
∇vT

h · Fi dx

+

∫

∂κ\∂Ω

v+
h

THi(u
+
h ,u−

h , n̂) ds +

∫

∂κ∩∂Ω

v+
h

THb
i (u

+
h ,ub

h, n̂) ds
}

= 0, (2.3)

where Hi(u
+
h ,u−

h , n̂) and Hb
i (u

+
h ,ub

h, n̂) are numerical flux functions defined for interior

and boundary faces, respectively. In this work, the Roe-averaged flux [46] is used for the

inviscid numerical flux on interior faces. The boundary conditions are imposed weakly by

constructing an exterior boundary state, ub
h, which is a function of the interior state and

known boundary data. Boundary conditions are discussed in more detail in Section 2.4.2.

Furthermore, the (·)+ and (·)− notation is used to indicate the trace value taken from the

interior and exterior of the element, respectively.

2.2 DG for Navier-Stokes

The compressible, two-dimensional Navier-Stokes equations in strong, conservation form

are

ut + ∇ · Fi(u) −∇ · Fv(u,∇u) = 0, (2.4)
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where the conservative state, u, and inviscid flux vector, Fi, are defined in Section 2.1. The

viscous flux, Fv = Av∇u = (Fx
v ,Fy

v), is given by

Fx
v =





0

2
3
µ(2∂u

∂x − ∂v
∂y )

µ(∂u
∂y + ∂v

∂x)

2
3
µ(2∂u

∂x − ∂v
∂y )u + µ(∂u

∂y + ∂v
∂x)v + κ∂T

∂x




,

Fy
v =





0

µ(∂u
∂y + ∂v

∂x)

2
3
µ(2∂v

∂y − ∂u
∂x)

2
3
µ(2∂v

∂y − ∂u
∂x)v + µ(∂u

∂y + ∂v
∂x)u + κ∂T

∂y




,

where µ is the dynamic viscosity and κ is the thermal conductivity.

2.2.1 Flux Formulation

The first step in the flux formulation is to rewrite Eqn. 2.4 as a first-order system. To

accomplish this reduction of order, a new variable, Q = Av∇u, is defined. Thus, Eqn. 2.4

can be written as a first-order system in terms of Q:

ut + ∇ · Fi −∇ · Q = 0,

Q−Av∇u = 0. (2.5)

Multiplying Eqns. 2.5 by test functions v and τ , respectively, and integrating by parts gives

the weak formulation:

∫

Ω

vTut dx +

∫

∂Ω

vTFi · n̂ ds −
∫

Ω

∇vT · Fi dx

−
∫

∂Ω

vTQ · n̂ ds +

∫

Ω

∇vT · Q dx = 0, ∀v ∈ H1(Ω),

∫

Ω

τT · Q dx −
∫

∂Ω

uT (AT
v τ ) · n̂ ds

+

∫

Ω

uT∇ · (AT
v τ ) dx = 0, ∀τ ∈ [H1(Ω)]2.

Then, using the space Vp
h and triangularization Th defined in Section 2.1, the spatial dis-

cretization of Eqn. 2.4 takes the following form: find uh ∈ Vp
h and Qh ∈ [Vp

h]2 such that
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∀vh ∈ Vp
h and ∀τ h ∈ [Vp

h]2,

∑

κ∈Th

{∫

κ
vT

h (uh)t dx −
∫

κ
∇vT

h · Fi dx +

∫

∂κ\∂Ω

v+
h

THi(u
+
h ,u−

h , n̂) ds

+

∫

∂κ∩∂Ω

v+
h

THb
i (u

+
h ,ub

h, n̂) ds
}
−

∑

κ∈Th

{ ∫

∂κ\∂Ω

v+
h

THv(Q+
h ,Q−

h ) · n̂ ds

+

∫

∂κ∩∂Ω

v+
h

THb
v(Q+

h ,Qb
h) · n̂ ds −

∫

κ
∇vT

h · Qh dx
}

= 0,

∑

κ∈Th

{∫

κ
τT

h · Qh dx −
∫

∂κ\∂Ω

hu(u+
h ,u−

h )T (AT
v τ h)+ · n̂ ds

−
∫

∂κ∩∂Ω

ub
h

T
(AT

v τh)+ · n̂ ds +

∫

κ
uT

h∇ · (AT
v τ h) dx

}
= 0, (2.6)

where hu and ub
h are numerical fluxes approximating u, and Hv and Hb

v are numerical fluxes

approximating Av∇u on interior and boundary faces, respectively. Thus, given definitions

of these numerical fluxes, Eqn. 2.6 gives the semi-discrete flux form of the Navier-Stokes

equations.

Note that the first summation over κ in Eqn. 2.6 is exactly the same as that in the

Euler discretization given by Eqn. 2.3. These terms are not modified by the addition of the

viscous discretization; thus, from this point forward, they are denoted simply as E.

2.2.2 Primal Formulation

To simplify the notation of the primal form, jump, J·K, and average, {·}, operators are

defined for interior faces. For spatially scalar quantities, the operators are given by

JsK = s+n̂+ + s−n̂−,

{s} =
1

2
(s+ + s−),

where (·)+ and (·)− refer to trace values taken from opposite sides of the face. Note that

the unit normals n̂+ and n̂− are outward pointing with reference to the sides (·)+ and (·)−,

and, thus, n̂+ = −n̂−. Furthermore, for spatially vector quantities,

JϕK = ϕ+ · n̂+ + ϕ− · n̂−,

{ϕ} =
1

2
(ϕ+ + ϕ−).
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Via substitution, one can show that,

∑

κ∈Th

∫

∂κ\∂Ω

s+T
ϕ+ · n̂ ds =

∫

Γi

JsKT · {ϕ} ds +

∫

Γi

{s}T JϕK ds, (2.7)

where Γi is the union of all interior faces. Applying Eqn. 2.7, Eqns. 2.6 become

E +
∑

κ∈Th

[ ∫

κ
∇vT

h · Qh dx
]
−

∫

Γi

JvhKT · {Hv} ds

−
∫

Γi

{vh}T JHvK ds −
∫

∂Ω

v+
h

THb
v · n̂ ds = 0,

∑

κ∈Th

[ ∫

κ
τT

h · Qh dx +

∫

κ
uT

h∇ · (AT
v τ h) dx

]
−

∫

Γi

JhuKT · {AT
v τh} ds

−
∫

Γi

{hu}T JAT
v τ hK ds −

∫

∂Ω

ub
h

T
(AT

v τ h)+ · n̂ ds = 0. (2.8)

Integrating by parts and using Eqn. 2.7, the term
∑

κ∈Th

∫
κ uh

T∇ · (AT
v τ h) dx in Eqn 2.8

can be rewritten:

∑

κ∈Th

∫

κ
uT

h∇ · (AT
v τh) dx =

∫

Γi

(
JuhKT · {AT

v τh} + {uh}T JAT
v τ hK

)
ds

+

∫

∂Ω

u+
h

T
(AT

v τ h)+ · n̂ ds

−
∑

κ∈Th

∫

κ
τT

h · (Av∇uh) dx. (2.9)

Then, substituting Eqn. 2.9 into the second of Eqns. 2.8 yields

∑

κ∈Th

{∫

κ
τT

h · Qh dx −
∫

κ
τT

h · (Av∇uh) dx
}

−
∫

Γi

(
Jhu − uhKT · {AT

v τh} + {hu − uh}T JAT
v τ hK

)
ds

−
∫

∂Ω

(ub
h − u+

h )T (AT
v τ h)+ · n̂ ds = 0.

Finally, defining lifting operators δ and δi as

∑

κ∈Th

∫

κ
τT

h · δ dx = −
∫

Γi

Jhu − uhKT · {AT
v τh} ds −

∫

∂Ω

(ub
h − u+

h )T (AT
v τ h)+ · n̂ ds,

∑

κ∈Th

∫

κ
τT

h · δi dx = −
∫

Γi

{hu − uh}T JAT
v τ hK ds,
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one can write Qh in terms of uh, δ, and δi:

Qh = Av∇uh − δ − δi.

Thus, taking τ h = ∇vh, the primal form is given by the following: find uh ∈ Vp
h such that

∀vh ∈ Vp
h,

E +
∑

κ∈Th

∫

κ
∇vT

h · (Av∇uh) dx +

∫

Γi

(
Jhu − uhKT · {AT

v ∇vh} − JvhKT · {Hv}
)

ds

+

∫

Γi

(
{hu − uh}T JAT

v ∇vhK − {vh}T JHvK
)

ds

+

∫

∂Ω

[
(ub

h − u+
h )T (AT

v ∇vh)+ · n̂ − v+
h

THb
v · n̂

]
ds = 0. (2.10)

Again, to fully define the discretization, one must define the numerical fluxes hu(u+
h ,u−

h )

and Hv(Q+
h ,Q−

h ) for interior faces and ub
h and Hb

v for boundary faces. These definitions are

considered in Section 2.2.3.

2.2.3 Bassi and Rebay Discretization

Motivated by the lack of any upwinding mechanism in the viscous terms of the Navier-Stokes

equations, one might consider using central fluxes for hu and Hv:

hu = {uh},

Hv = {Qh}.

These fluxes were originally developed and applied by Bassi and Rebay [8] with moderate

success. However, they are used here only to motivate the final flux choice.

Clearly, both fluxes are single-valued on a given face, thus,

{Hv} = Hv,

JHvK = 0,

and

{hu − uh} = 0,

Jhu − uhK = −JuhK.
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To complete the interior face flux definition, note that

Hv = {Qh} = {Av∇uh − δ − δi}.

However,
∑

κ∈Th

∫

κ
τT

h · δidx = −
∫

Γi

{hu − uh}T JAT
v τhKds = 0.

Thus,

Hv = {Av∇uh} − {δ}.

Finally, boundary conditions are of the form

ub
h = ub

h(u+
h , BC Data),

Hb
v = Hb

v(u
+
h ,∇u+

h , BC Data) = (Av∇uh)b − δb.

Thus, the final form of the discretization is as follows: find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

E +
∑

κ∈Th

∫

κ
∇vT

h · (Av∇uh) dx −
∫

Γi

(
JuhKT · {AT

v ∇vh} + JvhKT · {Av∇uh}
)

ds

+

∫

Γi

JvhKT · {δ} ds +

∫

∂Ω

(ub
h − u+

h )T (AT
v ∇vh)+ · n̂ ds

−
∫

∂Ω

v+
h

T
(Av∇uh)b · n̂ ds +

∫

∂Ω

v+
h

T
δb · n̂ ds = 0.

Unfortunately, as shown by numerous authors [20, 21, 42], this discretization is problem-

atic for multiple reasons. First, on some meshes the viscous contribution to the Jacobian

may be singular. While the inviscid terms should make the discrete system non-singular,

this result is clearly undesirable. Second, stability and optimal order of accuracy in L2

cannot be proven [21]. In fact, Cockburn and Shu [20] have shown that for purely elliptic

problems, odd order interpolants produce sub-optimal order of accuracy equal to O(hp).

Finally, the scheme is not compact. This non-compactness is introduced through the global

lifting operator δ, as illustrated in 1-D by Figure 2-1. The figure shows that, while the resid-

ual on element k, Rk, depends explicitly on only uh and δ on the element and its neighbors

(elements k− 1, k, and k + 1), the global lifting operators on the neighboring elements also

depend on their neighbors. Thus, the dependence of Rk is extended to elements k − 2 and

k + 2 if the additional degrees of freedom for δ are eliminated.

Given the drawbacks of the previous scheme, a modification of this scheme which will

make it stable, optimally convergent, and compact is desired. Bassi and Rebay [11, 10] have

proposed modified numerical fluxes which accomplish these goals by replacing the global
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-1ku u k +1ku
δk

u k-2 -1ku u k

δk-1

Rk

-1ku u kδk-1 δk δk+1+1ku

u k +1ku u k+2

δk+1

Figure 2-1: 1-D stencil for first Bassi and Rebay scheme

lifting operator with a local lifting operator. The local lifting operator, or auxiliary variable,

δf , is defined by the following problem: find δf ∈ [Vp
h]2 such that ∀τ h ∈ [Vp

h]2,

∫

κ±

τT
h · δ±

f dx =

∫

σf

JuhKT · {AT
v τ h} ds (2.11)

for interior faces, and

∫

κ+

τT
h · δb

fdx = −
∫

σb
f

(ub
h − u+

h )T [(AT
v τ h) · n̂]+ ds, (2.12)

for boundary faces, where σf denotes a single interior face and σb
f denotes a single boundary

face.

Replacing the global lifting operator, δ, with the local lifting operator, δf , and mul-

tiplying by a stabilization parameter, ηf , which is discussed in Section 2.3, the numerical

fluxes Hv and Hb
v become

Hv = {Av∇uh} − ηf{δf},

Hb
v = (Av∇uh)b − ηfδb

f .

The hu and ub
h numerical fluxes are not modified. Thus, substituting the new numerical

fluxes into Eqn. 2.10 gives the second Bassi and Rebay discretization: find uh ∈ Vp
h such
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Figure 2-2: 1-D stencil for BR2 scheme

that ∀vh ∈ Vp
h,

E +
∑

κ∈Th

∫

κ
∇vT

h · (Av∇uh) dx −
∫

Γi

(
JuhKT · {AT

v ∇vh} + JvhKT · {Av∇uh}
)

ds

+

∫

Γi

JvhKT · ηf{δf} ds +

∫

∂Ω

(ub − u+
h )T (AT

v ∇vh)+ · n̂ ds

−
∫

∂Ω

v+
h

T
(Av∇uh)b · n̂ ds +

∫

∂Ω

v+
h

T
ηfδb

f · n̂ ds = 0. (2.13)

Note that, unlike the original choice of fluxes, the BR2 form has a compact stencil, meaning

that only elements that share a face are coupled. Figure 2-2 shows the stencil of the BR2

scheme in 1-D. It shows that the compact stencil follows from the fact that the local lifting

operators, δf , at a given face depend only on the elements that share that face.

Furthermore, for purely elliptic problems with homogeneous Dirichlet boundary condi-

tions, Arnold et al. [21] proves optimal error convergence in the L2 norm for p ≥ 1 when

ηf > 3 (note: the condition ηf > 3 is required to prove stability). However, in Section 2.3

we propose a definition of ηf which is generally less than this value but is required to pro-

duce optimal accuracy for p = 0; in practice, we have not found that this lower value of ηf

causes a loss of stability.

While the BR2 discretization is certainly not the only scheme proposed in the literature

which achieves optimal order of accuracy, it has some clear advantages. Other schemes

that achieve optimal order of accuracy include the local discontinuous Galerkin (LDG)

method [19, 20], a penalty method proposed by Brezzi [42], and the Baumann and Oden

scheme [13]. However, each of these has some drawbacks. LDG is not compact on general,
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unstructured meshes. The stabilization parameter required for optimal accuracy in the

Brezzi scheme can grow very large at high p because ηf ≈ h−2p, and the Baumann and

Oden scheme is only stable for p ≥ 2. In fact, the BR2 scheme is the only one proposed in

the literature to achieve optimal order of accuracy for all p ≥ 1 with a compact stencil.

The final discrete form is completed by choosing a basis and time discretization, as

shown in Section 2.5.

2.3 The Stabilization Parameter, ηf

As discussed in Section 2.2.3, ηf > 3 is required to prove stability for the BR2 scheme. For

p ≥ 1, there are no other conditions on the choice of ηf . However, for p = 0, if ηf is not

set appropriately, the error may not converge with h. A convergent p = 0 discretization is

desired such that it may be used as the coarsest order in the p-multigrid algorithm. This

section shows the derivation of the choice of ηf used in this work.

2.3.1 Motivation

To motivate the derivation of a non-constant ηf , results from the solution of Poisson’s

equation using ηf = 3 are shown. Thus, the problem is

−∇ · (∇u) = f in Ω (2.14)

u = g on ∂Ω,

where

f = −6(x + y),

g = x3 + y3.

For brevity, the BR2 discretization of this problem is not given here. However, it is given

for g = 0 in Eqn. 2.15.

To conduct a mesh refinement study, the domain, a unit square whose lower left corner

lies on the origin, is triangulated into grids of 44, 176, and 704 elements. Results of the study

are shown in Figure 2-3. For p ≥ 1, the L2-norm of the solution error converges optimally

at a rate of O(hp+1). However, for p = 0, the L2-norm of the error is approximately

constant with grid refinement. This behavior results from the fact that for p = 0, only

the auxiliary variable terms remain on the left hand side of the BR2 form. If ηf is not set

appropriately, the p = 0 discretization is not consistent. Thus, a definition of ηf that makes
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Figure 2-3: Mesh refinement results for 0 ≤ p ≤ 2 using ηf = 3

the discretization consistent is sought.

2.3.2 Formulation

For simplicity, the analysis is shown for Poisson’s equation with homogeneous Dirichlet

boundary conditions. Thus, the problem is given by Eqn. 2.14 with g = 0. For this case,

the BR2 discretization is given by Eqn. 2.15: find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

∇vh · ∇uh dx −
∫

Γi

(
JuhK · {∇vh} + JvhK · {∇uh}

)
ds

+

∫

Γi

ηf JvhK · {δf} ds +

∫

∂Ω

−u+
h ∇v+

h · n̂ ds

−
∫

∂Ω

v+
h ∇u+

h · n̂ ds +

∫

∂Ω

ηfv+
h δb

f · n̂ ds =
∑

κ∈Th

∫

κ
vhf dx, (2.15)

where Vp
h is now the space of discontinuous scalar-valued polynomials of degree p on a

subdivision Th of the domain into non-overlapping elements such that Ω =
⋃

κ∈Th
κ.

For p = 0, ∇uh = ∇vh = 0. Thus, Eqn. 2.15 becomes

∫

Γi

ηf JvhK · {δf} ds +

∫

∂Ω

ηfv+
h δb

f · n̂ ds =
∑

κ∈Th

∫

κ
vhf dx. (2.16)
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Examining the test function vh,i associated with element κi,

vh,i(x) =

{
1 if x ∈ κi

0 if x /∈ κi,

Eqn. 2.16 reduces to

1

2

∑

σ∈∂κi

∫

σ
ηf [(δf · n̂)+ − (δf · n̂)−] ds =

∫

κi

f dx, (2.17)

where κi has no faces on the domain boundary. Using the definition of the auxiliary variable

given in Eqn. 2.11, a p = 0 basis for τ h yields

(δf · n̂)+ =
1

2

1

A+
σ

(u+
h − u−

h )sσ, (2.18)

(δf · n̂)− = −1

2

1

A−
σ

(u+
h − u−

h )sσ, (2.19)

on a given edge, σ ∈ ∂κi, of length sσ. A+
σ and A−

σ are the areas of the elements adjoining

edge σ. Substituting Eqns. 2.18 and 2.19 into Eqn. 2.17 gives

∑

σ∈∂κi

[
1

4
ηfs2

σ(u+
h − u−

h )

(
1

A+
σ

+
1

A−
σ

)]
=

∫

κi

fdx. (2.20)

To motivate the definition of ηf for p = 0, apply the Divergence theorem to Poisson’s

equation, ∫

κi

f dx = −
∫

κi

∇ · (∇u) dx = −
∫

∂κi

∇u · n̂ ds.

For each edge, define an approximation to the directional derivative in the n̂ direction to

be

∇u · n̂ =
u−

h − u+
h

∆n
,

where ∆n is the distance between the + and − element centroids projected onto the n̂

direction. For triangles,

∆n =
1

3
(h+

σ + h−
σ ),

where h±
σ denotes the element height for elements adjacent to face σ, as shown in Figure 2-4.

Thus, ∫

κi

f dx = −
∫

∂κi

∇u · n̂ ds =
∑

σ∈∂κi

[
u+

h − u−
h

∆n

]

σ

sσ. (2.21)
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Figure 2-4: Definitions of h+, h−, and ∆n

Then, substituting Eqn. 2.21 into Eqn. 2.20 and solving for ηf yields

ηf =
4

sσ∆nσ

A+
σ A−

σ

A+
σ + A−

σ
. (2.22)

Eqn. 2.22 is valid for general elements. For triangles, A±
σ = 1

2
h±

σ sσ, thus,

ηf =
3

1 + 1
2
(h+

σ

h−
σ

+ h−
σ

h+
σ

)
.

An analogous procedure shows that, for triangular elements with straight edges, on the

boundary, ηf = 3/2 always.

Thus, using this definition, ηf ≤ 3 for every face. This result appears problematic given

that the stability proof requires ηf > 3. However, in practice, no problems have arisen.

Results for the case examined in Section 2.3.1 are given in Figure 2-5. The figure shows

that the L2 norm of the solution is converging at O(hp+1) for 0 ≤ p ≤ 2. Furthermore, for

compressible Navier-Stokes, Bassi and Rebay [11, 10] successfully applied the discretization

with ηf = 1 for p ≥ 1, and it is used here with ηf as given in Eqn. 2.22 without detrimental

effects. This fact is shown by the accuracy studies presented in Chapter 5.

2.4 Boundary Treatment

2.4.1 Geometry Representation: Curved Boundaries

As shown by Bassi and Rebay [9], high-order DG methods are highly sensitive to the

geometry representation. Thus, it is necessary to build a higher-order representation of the

domain boundary. In this work, the geometry is represented using a nodal Lagrange basis.
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Figure 2-5: Mesh refinement results for 0 ≤ p ≤ 2 using ηf as defined in Eqn 2.22

Thus, the mapping between the canonical triangle and physical space is given by

x =
∑

j

xjφj(ξ),

where φj is the jth basis function, ξ is the location in the reference space, and xj is the

location of the jth node in physical space. In general, the Jacobian of this mapping need

not be constant, meaning that triangles with curved edges can be mapped to the straight

edged canonical element. Thus, by placing the non-interior, higher-order nodes on the real

domain boundary, a higher-order geometry representation is achieved.

Two notes about this geometry representation must be made. First, on a curved element,

basis functions that are polynomials of order p on the canonical element are not polynomials

of order p in physical space. Thus, the interpolation order in physical space is less than p.

Second, as discussed in Section 5.2, it is unclear if this choice of geometry representation

is optimal as oscillations in the interpolated geometry may have detrimental effects on the

order of accuracy.

2.4.2 Boundary Conditions

Boundary conditions are enforced weakly via the domain boundary integrals appearing in

Eqn. 2.13. To evaluate these integrals, two previously undefined terms must be defined: ub
h

and (Av∇uh)b. This section defines these terms for various boundary conditions.
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Full State Condition

In some circumstances, the entire state vector at the boundary, ub
h, may be known. In these

cases, the inviscid flux is computed using the Riemann solver exactly as if the face were an

interior face:

Hb
i (u

+
h ,ub

h, n̂) = Hi(u
+
h ,ub

h, n̂).

No conditions are set on the viscous flux, thus, (Av∇uh)b is set by interpolating (Av∇uh)+

to the boundary. δb
f is computed using ub

h as shown in Eqn. 2.12.

Inflow/Outflow Conditions

At an inflow/outflow boundary, the boundary state, ub
h, is defined using the outgoing Rie-

mann invariants and given boundary data. Table 2.1 details the inflow/outflow conditions

used in this work. Note that, while the Euler equations are well-posed with just the bound-

Table 2.1: Types of inflow/outflow boundary conditions.

Condition Number of BCs Value Specified Outgoing Invariant

Subsonic Inflow 3 TT , pT , α J+

Supersonic Inflow 4 ρ, ρu, ρv, ρE None

Subsonic Outflow 1 p J+, v, s

Supersonic Outflow 0 None J+, J−, v, s

ary conditions listed in Table 2.1, the Navier-Stokes equations are not. Conditions—numeric

and/or physical—are needed to set (Av∇uh)b and δb
f . For this work, (Av∇uh)b is set by

extrapolating from the interior of the domain, and δb
f is computed as shown in Eqn. 2.12.

These gradient conditions have not been theoretically investigated and may be expected to

degrade accuracy and stability at low Re.

No Slip Wall Conditions

Two no slip wall conditions are used: adiabatic and isothermal. At a no slip, isothermal

wall, the velocity components and static temperature are set. Thus,

ub = 0,

vb = 0,

T b = Twall.
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To set the full state, these conditions are combined with the static pressure, p, which is

computed using the interior state interpolated to the boundary and given boundary data

(ub = vb = 0):

p = (γ − 1)ρE+.

Thus, the boundary state is given by

ub
h =





ρb

ρub

ρvb

ρEb




=





p
RT b

0

0

ρE+




.

No physical conditions are set on the viscous flux at the wall. However, the scheme requires

that this flux be set. Thus, it is extrapolated from the interior. The auxiliary variable, δf ,

is computed as stated in Eqn. 2.12.

At a no slip, adiabatic wall, the velocity components and the heat transfer to the wall

are given:

ub = 0,

vb = 0,

∂T

∂n

∣∣∣∣
b

= 0.

Only two conditions on the boundary state are known, thus, two variables must be set using

interior data and used to compute the boundary state. Static pressure, p, and stagnation

enthalpy per unit mass, H, have been chosen:

p = (γ − 1)ρE+,

H =
ρE+ + p

ρ+
.

Thus, the boundary state is given by

ub
h =





ρb

ρub

ρvb

ρEb




=





γ
γ−1

p
H

0

0

ρE+




.

The adiabatic condition, combined with the no slip condition, requires the viscous flux

associated with the energy equation—the fourth flux component—to be zero. The other
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components of the viscous flux are unconstrained by this condition. Therefore, the interior

viscous flux is used for these components and, thus, the boundary viscous flux is given by

[(Av∇uh)b · n̂] =





[(Av∇uh)+ · n̂]1

[(Av∇uh)+ · n̂]2

[(Av∇uh)+ · n̂]3

0




.

Furthermore, since the energy equation viscous flux is specified, the corresponding compo-

nent of the local lifting operator is set to zero. All other auxiliary variables are computed

in the usual fashion. Thus,

δb
f · n̂ =





[δb
f · n̂]1

[δb
f · n̂]2

[δb
f · n̂]3

0




.

2.5 Final Discrete System

To define the final discrete form, it is necessary to select a basis for the space Vp
h and

discretize in time. For the basis, a set of element-wise discontinuous functions, {φj}, is

chosen such that each φj has local support on one element only. Thus, the discrete solution

has the form

uh(x, t) =
∑

j

ūj(t)φj(x).

In this work, a nodal Lagrange basis with uniformly spaced nodes is used. However, it

should be noted that this basis becomes poorly conditioned as p increases, which can degrade

the iterative convergence rate. A hierarchical basis like that used in [22] can eliminate this

problem with the additional benefit of simplifying the multigrid prolongation and restriction

operators.

A backward Euler discretization is used for the time integration. Thus, the discrete

system is given by
1

∆t
M(ūn+1 − ūn) + R(ūn+1) = 0,

where M is the mass matrix and R(ūn+1) is the steady residual vector.

This work is principally concerned with steady problems. However, the unsteady term

is included to improve the performance of the solver in the initial iterations. After this

initial transient period, ∆t → ∞ [22].
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Chapter 3

Solution Method

Applying the discretization developed in Chapter 2, the discretized compressible Navier-

Stokes equations are given by a nonlinear system of equations R(u) = 0. To solve this

system, a p-multigrid scheme with element-line Jacobi smoothing, developed by Fidkowski

and Darmofal [22, 23], is used. A general preconditioned iterative scheme can be written

un+1 = un − P−1R(un),

where the preconditioner matrix, P, is an approximation to the Jacobian, ∂R

∂u
. Two types of

preconditioners are examined: element Jacobi, where the unknowns on a single element are

solved simultaneously, and element-line Jacobi, where the unknowns on a line of elements

are solved simultaneously. Details of both smoothers as well as the line creation procedure

and multigrid solver are presented. The discussion draws heavily on [22].

3.1 Preconditioners

For the element Jacobi scheme, the unknowns on a single element are solved simultaneoulsy.

The diagonal blocks of the Jacobian matrix represent the influence of the state variables

in a given element on the residual in that element. Thus, the preconditioner matrix is the

block diagnonal of the Jacobian. To improve the robustness during the initial iterations,

the block diagonal is augmented by an unsteady term. Thus, the preconditioner is,

P = D +
1

∆t
M,

where D is the block diagnonal of ∂R

∂u
and M is the mass matrix. As the solution converges,

∆t → ∞.
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The addition of the unsteady term does not change the block diagonal structure of P.

Thus, it is inverted one block at a time using Gaussian elimination.

The element-line Jacobi scheme is slightly more complex. In strongly convective systems,

transport of information proceeds along characteristic directions. By solving implicitly on

lines of elements connected along these directions, one can alleviate the stiffness associated

with strong convection. Furthermore, for viscous flows, the element-line Jacobi solver is an

important ingredient in removing the stiffness associated with regions of high grid anisotropy

frequently required in viscous layers [2, 37]. Thus, the element-line Jacobi scheme requires

the ability to construct lines of elements based on some measure of element-to-element

coupling and to solve implicitly on each line. This section considers the construction and

inversion of the preconditioner matrix given a set of lines. The line creation algorithm is

described in Section 3.2.

Given a set of Nl lines, the preconditioner matrix, P, is composed of Nl tridiagonal

systems constructed from the linearized flow equations. Let the tridiagonal system for line

l, where 1 ≤ l ≤ Nl, be written Ml. Then, denoting the number of elements in line l as nl,

Ml is a block nl×nl matrix. As before, the on-diagonal blocks represent the influence of the

state variables in a given element on the residual in that element. The off-diagonal blocks,

Ml(j, k), represent the influence of the states in element k on the residual in element j.

As in the element smoother case, the element-line smoother is augmented by an unsteady

term to improve robustness. Thus, the final form of the preconditioner is,

P = M +
1

∆t
M,

where M is the set of assembled Ml matrices.

Inversion of P uses a block-tridiagonal algorithm in which the diagonal block is LU

decomposed. As the dominant cost of the element-line Jacobi solver (especially for higher-

order schemes) is the LU decomposition of the diagonal, the computational cost of the

element-line Jacobi smoother scales as that of the simpler element Jacobi. However, the

performance of the element-line Jacobi smoother is significantly better due to the increased

implicitness along strongly coupled directions.

3.2 Line Creation

The effectiveness of the element-line Jacobi smoother depends largely on the quality of lines

produced by the line creation procedure. For inviscid or nearly inviscid flows, information

flows along characteristic directions set by convection. Thus, the lines should be aligned
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with the streamline direction to alleviate the stiffness associated with strong convection.

In viscous flows, the effects of diffusion and regions of high grid anisotropy, such as those

typically associated with boundary layers, couple elements in directions other than the

convection direction. Connecting elements in these off-convection directions can alleviate

the stiffness associated with diffusion and grid anisotropy.

The line creation procedure is divided into two parts: the connectivity criterion, which is

a measure of the coupling between elements, and the line creation algorithm, which connects

elements into lines based on the connectivity criterion.

3.2.1 Connectivity Criterion

The measure of coupling used in this work is similar to that used in the nodal line creation

algorithm of Okusanya [39]. In that algorithm, the coupling was taken directly from the

discretization.

In this work, the coupling is based on a p = 0 discretization of the scalar transport

equation,

∇ · (ρ~uφ) −∇ · (µ∇φ) = 0,

where ρ~u and µ are taken from the solution at the current iteration. More specifically, the

coupling between two elements j and k that share a face is given by

Cj,k = max

(∣∣∣∣
∂Rj

∂φk

∣∣∣∣ ,

∣∣∣∣
∂Rk

∂φj

∣∣∣∣

)
.

While this definition of coupling does not represent the exact coupling between ele-

ments for the higher-order Navier-Stokes discretization being solved, it captures the rele-

vant features—the effects of convection and diffusion—and remains unique. In the p = 0

discretization of the scalar transport equation, the off-diagonal components of the Jacobian

matrix are scalars. For a p ≥ 1 discretization of the scalar transport equation or any order

discretization of a system of equations, the off-diagonal blocks of the Jacobian are matrices.

Thus, a matrix norm would be required to make the coupling unambiguous.

3.2.2 Line Creation Algorithm

After computing the elemental coupling, lines of elements are formed using the line creation

algorithm developed by Fidkowski and Darmofal [22, 23]. The summary given here is based

on [22].

The line creation process is divided into two stages: line creation and line connection.

Let N(j; f) denote the element adjacent to element j across face f , and let F (j) denote the
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set of faces enclosing element j. Then, the line creation algorithm is as follows:

Stage I: Line Creation

1. Obtain a seed element i

2. Call MakePath(i) - Forward Path

3. Call MakePath(i) - Backward Path

4. Return to (1). The algorithm is finished when no more seed elements exist.

MakePath(j)

While path not terminated:

For element j, pick the face f ∈ F (j) with highest connectivity, such that element

k = N(j; f) is not part of the current line. Terminate the path if any of the

following conditions hold:

- face f is a boundary face

- element k is already part of a line

- C(j, k) is not one of the top two connectivities in element k

Otherwise, assign element j to the current line, set j = k, and continue.

After completing Stage I, it is possible that the endpoints of two lines are adjacent to each

other, as illustrated in Figure 3-1. Elements a and b have not been connected because the

a b

c d

(a)

a b

c d

(b)

Figure 3-1: Possible line configuration: (a) after Stage I and (b) after stage II. Reproduced
with permission from [22].
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connectivity, Ca,b, is the minimum connectivity for both elements. However, the pairs a, c

and b, d have not been connected because Ca,c and Cb,d are the minimum connectivities for

elements c and d, respectively. For best solver performance, it is desirable to use lines of

maximum length. Thus, it is necessary to connect elements a and b. The line connection

stage accomplishes this goal.

Stage II: Line Connection

1. Loop through endpoint elements, j, of all lines. Denote by Hj ⊂ F (j) the set of faces

h of j that are boundary faces or that have N(j; h) as a line endpoint.

2. Choose h ∈ Hj of maximum connectivity. If h is not a boundary face, let k = N(j; h).

3. If k has no other neighboring endpoints of higher connectivity, and no boundary faces

of higher connectivity, then connect the two lines to which j and k belong.

Proofs that both stages of the line creation algorithm result in a unique set of lines, inde-

pendent of seed element, are provided in [22].

The lines formed for a 2-D NACA 0012 test case are shown in Figure 3-2. As shown

(a) Outer flow (b) Trailing edge

Figure 3-2: Lines formed around NACA 0012 in M = 0.5, Re = 5000, α = 0o flow

in Figure 3-2(a), the lines in the outer flow, where convection dominates, simply follow the

streamline direction. In viscous regions—the boundary layer and wake in this problem—the
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effects of high aspect ratio elements and diffusion produce elements that are tightly coupled

in the direction normal to convection. Thus, as shown in Figure 3-2(b), lines are formed

normal to the streamline direction. Details and results for this case are given in Chapter 5.

3.3 p-Multigrid

3.3.1 Motivation

The use of multigrid techniques is motivated by the observation that the smoothers devel-

oped in Section 3.1 are ineffective at eliminating low-frequency error modes on the fine grid.

In standard h-multigrid, spatially coarser grids are used to correct the error on the fine grid.

On a coarser grid, the low-frequency error modes from the fine grid appear as high-frequency

modes, and, thus, the smoothers can effectively correct them. p-Multigrid uses the same

principle except that lower-order approximations serve as the “coarse grid” [48, 26].

Furthermore, p-multigrid fits naturally into the high-order DG, unstructured grid frame-

work. Unlike h-multigrid, spatially coarser meshes are not required. Thus, no element

agglomeration or re-meshing procedures are necessary. Only prolongation and restriction

between orders are required. Moreover, the prolongation and restriction operators are local,

meaning that they must only be stored for the canonical element.

3.3.2 FAS and Two-level Multigrid

The multigrid method used here is the Full Approximation Scheme (FAS), introduced by

Brandt [14]. The following description is taken from Fidkowski [22].

Consider the discretized system of equations given by

Rp(up) = fp,

where up is the discrete solution vector for pth order interpolation on a given grid, Rp(up)

is the associated nonlinear system, and fp is a source term (zero for the fine-level problem).

Let vp be an approximation to the solution vector and define the discrete residual, rp(vp),

by

rp(vp) ≡ fp − Rp(vp).

In a basic two-level multigrid method, the exact solution on a coarse level is used to correct

the solution on the fine level. This multigrid scheme is given as follows:

• Perform ν1 smoothing interations on the fine level: vp, n+1 = vp, n − P−1rp(vp, n)
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• Restrict the state and residual to the coarse level: vp−1

0 = Ĩp−1
p vp, rp−1 = Ip−1

p rp.

• Solve the coarse level problem: Rp−1(vp−1) = Rp−1(vp−1

0 ) + rp−1.

• Prolongate the coarse level error and correct the fine level state: vp = vp+Ip
p−1(v

p−1−
vp−1

0 )

• Perform ν2 smoothing interations on the fine level: vp, n+1 = vp, n − P−1rp(vp, n).

Ip−1
p is the residual restriction operator, and Ip

p−1 is the state prolongation operator. Ĩp−1
p

is the state restriction operator and is not necessarily the same as the residual restriction.

Alternatively, the FAS coarse level equation can be written as

Rp−1(vp−1) = Ip−1
p fp + τp−1

p ,

τp−1
p ≡ Rp−1(Ĩp−1

p vp) − Ip−1
p Rp(vp).

The first equation differs from the original coarse level equation by the presence of the term

τp−1
p , which improves the correction property of the coarse level. In particular, if the fine

level residual is zero, the coarse level correction is zero since vp−1 = vp−1

0 .

3.3.3 V-cycles and FMG

To make multigrid practical, the two-level correction scheme is extended to V-cycles and Full

Multigrid (FMG). In a V-cycle, one or more levels are used to correct the fine level solution.

Descending from the finest level, after restriction, ν1 smoothing steps are performed at each

level until the coarsest level is reached. On the coarsest level, the problem may be solved

exactly or smoothed a relatively large number of times. Ascending, the problem is smoothed

ν2 times on each level after prolongation until the finest level is reached. This procedure

constitutes one V-cycle which is also refered to as one multigrid iteration.

Using only V-cycles to obtain high-order solutions is impractical because it requires

starting the calculation on the finest level, where there are the most degrees of freedom

and smoothing is most expensive. This problem can be eliminated by using FMG, where

the calculation is started on the coarsest level. After converging or partially converging

the solution, it is prolongated to the next finer level. Running V-cycles at this level, the

solution is partially converged and then prolongated to the next finer level. This procedure

continues until the desired solution order is reached.

For more details on the prolongation and restriction operators or the multigrid imple-

mentation, see [22, 23].
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Chapter 4

Stability Analysis

To determine the stability of the smoothers discussed in Chapter 3, Fourier (Von Neumann)

analysis is performed for convection-diffusion in one and two dimensions with periodic

boundary conditions. The analysis follows that of [22] for advection. The convection-

diffusion problem is given by

~V · ∇u − ν∇2u = f(~x),

aux − νuxx = f(x) on [−1, 1],

aux + buy − ν(uxx + uyy) = f(x, y) on [−1, 1] × [−1, 1].

For this analysis, the velocity, ~V , is constant, u is the concentration variable, and f is a

source term.

4.1 Outline of Analysis

To begin, the domain is triangulated, and the convection-diffusion equation is discretized

following the steps in Chapter 2. The resulting discrete system is linear and will be written

Au = f , where u is the exact solution. Denoting the current solution guess as vn, the

general iterative solution procedure as defined in Chapter 3 is given by

vn+1 = vn − P−1rn,

where

rn = Avn − f . (4.1)
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Defining the error at iteration n to be en = vn −u, Eqn. 4.1 can be written in terms of the

error:

Aen = rn. (4.2)

Thus, the iterative scheme can also be put in terms of the error:

en+1 = Sen,

where S = I − P−1A is the iteration matrix and I is the identity matrix. The spectral

radius of the iteration matrix, |ρ(S)|, determines the growth or decay of the error. Thus,

to determine the stability of the iterative scheme, it is necessary to compute the eigenvalue

footprint of this matrix. For stability, the eigenvalues of S must lie in the unit circle centered

at the origin. This stability condition requires that the eigenvalues of −P−1A lie in the

unit circle centered at (−1, 0). Thus, eigenvalue footprints of −P−1A are computed for

both element and element-line Jacobi relaxation via Fourier analysis. The specifics of the

discretization and Fourier analysis, including results, are presented in Sections 4.2 and 4.3.

4.2 One Dimensional Analysis

To discretize, the domain, [−1, 1], is divided into a triangulation, Th, of N elements, κ, of

size ∆x = 2/N , such that
⋃

κ∈Th
κ = [−1, 1]. Then, using the solution and test function

space Vp
h defined by Eqn. 2.2, the DG discretization of Eqn. 4.1 takes the following form:

find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

[
H(uh)v+

h |κR −H(uh)v+
h |κL −

∫

κ
auhvh,x dx +

∫

κ
νuh,xvh,x dx

]

−
∑

Γ

[JvhK (ν{uh,x} − ηf{δf}) + JuhK{νvh,x}] =
∑

κ∈Th

∫

κ
vhf dx, (4.3)

where κL and κR denote the left and right boundaries, respectively, of the element κ, and

Γ is the union of element boundaries over the entire domain. Full-upwinding is used for the

inter-element inviscid flux, such that H(uh) is given by,

H(uh) =
1

2
(a − |a|)uh,R +

1

2
(a + |a|)uh,L,

where uh,L and uh,R are values of uh taken from the left and right elements at an interface.

In 1-D, the local lifting operator is a scalar defined by the following: find δf ∈ Vp
h such that
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∀τh ∈ Vp
h, ∫

κL/R

τhδ
L/R
f dx = −1

2
[ντh(uh,L − uh,R)]σf

,

where σf denotes a single inter-element boundary, and κL/R represents the elements to the

left and right of this boundary. Finally, for uniform spacing, ηf = 2 at each interface.

Using a basis {φj} for the finite element space Vp
h, the concentration, uh, is represented

by uh(x) =
∑

j ujφj(x). Thus, Eqn. 4.3 can be written concisely as Au = f , where u is the

vector of solution coefficients, uj . For this analysis, standard Lagrange basis functions are

used.

Assuming the error varies sinusoidally on the elements, it can be decomposed into N

modes,

en =

N/2∑

j=−N/2+1

en(θj),

where the jth error mode is given by,

en(θj) =





ēn
1 (θj)

...

ēn
r (θj)

...

ēn
N (θj)





, ēn
r (θj) = v̄n(θj) exp(irθj), (4.4)

and θj = jπ∆x and r is the element index. Thus, ēn
r (θj) is a vector of length p + 1

corresponding to the jth error mode on element r.

Using the fact that the stencil is element compact, the Eqn. 4.2 can be written, for any

element r, as

ÂW ēn
r−1 + Â0ēn

r + ÂE ēn
r+1 = rn

r , (4.5)

where ÂW , Â0, and ÂE are the (r, r − 1), (r, r), and (r, r + 1) blocks of the matrix A.

Because the boundary conditions are periodic, if r = 1, r − 1 refers to element N , and if

r = N , r + 1 refers to element 1. Substituting the form of the error from Eqn. 4.4 into

Eqn. 4.5 gives [
ÂW exp(−iθj) + Â0 + ÂE exp(iθj)

]
ēn

r = rn
r .

Thus, the system of N(p + 1) equations governing the error represented by Eqn. 4.2 can be

reduced to a system of (p + 1) equations for each error mode. Furthermore, the iterative

47



scheme can also be reduced such that the relaxation of the jth error mode is given by

ēn+1
r (θj) = S̃(θj)ē

n
r (θj) = S̃n+1(θj)v̄

0(θj) exp(irθj),

where S̃(θj) is a (p + 1) × (p + 1) matrix corresponding to the iteration matrix, S, for

sinusoidal error variation. Thus, to determine the stability of an iterative scheme, one must

compute the eigenvalues of S̃(θj) for all j.

For the element Jacobi smoother, the preconditioner, P, is the block diagonal of A.

Thus, for sinusoidal error, the (p+1)× (p+1) equivalent of the iteration matrix is given by

S̃(θj) = Ĩ − P̃−1Ã(θj),

where

P̃−1Ã(θj) = (Â0)−1(ÂW exp(−iθj) + Â0 + ÂE exp(iθj)).

Footprints of −P̃−1Ã for the 1-D element Jacobi smoother are shown in Figure 4-1. In

1-D, the footprints depend only on the solution order, p, and the element Reynolds number,

Re ≡ a∆x/ν. The figures show footprints for p = 0, 1, 2, 3 at four Re. Note that all the

eigenvalues are stable and that, as Re → ∞, all the eigenvalues associated with p > 0 are

centered at the origin [22].

In 1-D the element-line Jacobi smoother becomes an exact solve. Thus, this smoother

is only examined in 2-D.

4.3 Two Dimensional Analysis

In 2-D, the domain is subdivided into NxNy rectangular elements, κ, of size ∆x by ∆y where

∆x = 2/Nx and ∆y = 2/Ny. The discretization procedure is analogous to that for the 1-D

case. The 2-D basis is given by the tensor product of the 1-D basis: φαβ(x, y) = φα(x)φβ(y),

where φα and φβ are 1-D Lagrange basis functions. Thus, there are (p+1)2 basis functions

per element.

Indexing elements by the ordered pair (r, s), error modes have the form

ēn
r,s(θj , θk) = v̄n exp(irθj + isθk),

where θj = jπ∆x, θk = kπ∆y, and j, k ∈ (−N/2 + 1, ..., N/2). Thus, for the element (r, s),

Eqn. 4.2 becomes

[
ÂW exp(−iθj) + ÂS exp(−iθk) + Â0 + ÂE exp(iθj) + ÂN exp(iθk)

]
ēn

r,s = rn
r,s,
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Figure 4-1: Eigenvalue footprints for element Jacobi preconditioned 1-D convection-diffusion
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where each Â matrix is size (p + 1)2 × (p + 1)2.

Thus, the (p + 1)2 × (p + 1)2 iteration matrix corresponding to S for sinusoidal error is

given by the following:

S̃(θj , θk) = Ĩ − P̃−1(θj , θk)Ã(θj , θk).

The preconditioner in the element smoothing case is still simply the block diagonal:

P̃ = Â0.

The form of the element-line smoother depends on the direction of the lines. As de-

scribed in Section 3.2, lines are formed based on the coupling between elements for a p = 0

discretization of convection-diffusion. Figure 4-2 shows the dependence of r0 on the sur-

rounding elements. For p = 0, the residual and error on each element are constant, thus,

the residual on element zero is

r0 =

[
∂r0
∂eE

∂r0
∂eN

∂r0
∂e0

∂r0
∂eW

∂r0
∂eS

]





eE

eN

e0

eW

eS





,

where 



∂r0
∂eE

∂r0
∂eN

∂r0
∂e0

∂r0
∂eW

∂r0
∂eS





=





(
1
2
∆y(a − |a|) − ∆y

∆xν
)

(
1
2
∆x(b − |b|) − ∆x

∆y ν
)

(
∆y|a| + ∆x|b| + 2ν(∆y

∆x + ∆x
∆y )

)

(
−1

2
∆y(a + |a|) − ∆y

∆xν
)

(
−1

2
∆x(b + |b|) − ∆x

∆y ν
)





.
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Note that because the problem has constant coefficients and the grid is uniform,

∂rE

∂e0

=
∂r0
∂eW

,

∂rN

∂e0

=
∂r0
∂eS

,

∂rW

∂e0

=
∂r0
∂eE

,

∂rS

∂e0

=
∂r0
∂eN

.

These relationships imply that the vertical face and horizontal face connectivity values are

constant throughout the domain. Thus, if the horizontal connectivity is greater than the

vertical connectivity,

max

(∣∣∣∣
∂r0
∂eE

∣∣∣∣ ,

∣∣∣∣
∂r0
∂eW

∣∣∣∣

)
≥ max

(∣∣∣∣
∂r0
∂eN

∣∣∣∣ ,

∣∣∣∣
∂r0
∂eS

∣∣∣∣

)
,

which simplifies to

∆y
(
|a| + ν

∆x

)
≥ ∆x

(
|b| + ν

∆y

)
,

the lines are horizontal everywhere. Otherwise, they are vertical.

For the horizontal case, the preconditioner is

P̃(θj) = ÂW exp(−iθj) + Â0 + ÂE exp(iθj),

and for the vertical case,

P̃(θk) = ÂS exp(−iθk) + Â0 + ÂN exp(iθk).

In 2-D, the eigenvalue footprints depend of five parameters: smoother choice; solution

order, p; element Reynolds number, Re ≡ a∆x/ν; element aspect ratio, AR = ∆x/∆y; and

flow angle, tanα = b/a. Footprints of −P−1A for both element and element-line Jacobi

smoothing are shown in Figure 4-3 and Figure 4-4. Two flow conditions are shown: a low

AR, low Re case, and a high AR, high Re case. The cases are meant to be representative

of the range of flow conditions one would encounter in a typical aerodynamic simulation.

The low AR, low Re case approximates the conditions one would expect near the leading

edge of an airfoil, while the high AR, high Re case is representative of a boundary layer in a

high speed flow. While only two cases are shown, a comprehensive study of the parameter

space was conducted using 1 ≤ AR ≤ 500, 0 ≤ Re ≤ 10000, and 1o ≤ α ≤ 25o. As in the

1-D case, the smoothers are stable independent of p and flow condition.
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Figure 4-3: Eigenvalue footprints for element Jacobi preconditioned 2-D convection-diffusion
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Figure 4-4: Eigenvalue footprints for element-line Jacobi preconditioned 2-D convection-
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Chapter 5

Numerical Results

In this chapter, three test cases are considered. For the first two cases, source terms are

added to the compressible Navier-Stokes equations such that a desired analytic function is

the exact solution. Thus, the L2-norm of the error in the solution may be computed. Mesh

refinement studies for these cases show optimal order of accuracy.

The last case presented is that of M = 0.5, Re = 5000, laminar flow over a NACA

0012 airfoil at α = 0o. A grid refinement study shows that the drag on the airfoil can be

computed accurately in less time using high-order rather than highly refined meshes.

5.1 Poiseuille Flow

To numerically verify the order of accuracy of the discretization, the first test case considered

is that of fully developed flow in a straight channel. Thus, the exact solution is of the form:

ρ = constant,

u =
1

2µ

(
dp

dx

)
y(y − b),

v = 0.

Of course, the classical, Poiseuille form is a solution of the incompressible Navier-Stokes

equations. To make this form satisfy the compressible Navier-Stokes equations, constant

viscosity is assumed, and a source term is added to the right-hand side of the energy

equation. Thus, the equations are

ut + ∇ · Fi(u) −∇ · Fv(u,∇u) = S, (5.1)
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where,

S =





0

0

0

1
2µ

(
dp
dx

)2

y(y − b)
[

1
γ−1

− 1
2
y(y − b)

]




.

Finally, in terms of the conservative state variables, the exact solution is given by

u =





ρ

ρu

ρv

ρE




=





1

1
2µ

(
dp
dx

)
y(y − b)

0

1
γ−1

(po + dp
dxx) + u2




.

For this test, the parameters µ, p0, and dp
dx are chosen as

µ = 1 × 10−4,

po = 1,

dp

dx
= −8 × 10−4.

The domain of interest is a 1 × 1 square shown in Figure 5-1(a). On the left and

right boundaries, the boundary state is set to the exact solution. On the top and bottom

boundaries, no slip, isothermal wall conditions are imposed.

u ex
ac

t
u hb

=

u ex
ac

t
u hb

=

x

1.0

b=1.0
Flow Direction

y

Isothermal Wall

Isothermal Wall

(a) Dimensions and BCs (b) Medium mesh, 176 elements

Figure 5-1: Domain for Poiseuille flow test case
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Figure 5-2: Accuracy results for 0 ≤ p ≤ 3 for Poiseuille flow test case

The coarsest grid used contains 44 elements. The next finer grid (176 elements), which

is shown in Figure 5-1(b), was generated by subdividing each element into four elements

such that the grid spacing, h, is halved. This procedure was repeated a total of three times,

resulting in four meshes containing 44, 176, 704, and 2816 elements. Note that, since the

channel has straight geometry, it can be represented exactly with straight-edged (q = 1)

triangles. From this point forward, q is used to represent the order of the basis used for the

geometry interpolation.

Results of the mesh refinement study are shown in Figure 5-2. Figure 5-2(a) shows

that the L2-norm of the error is converging at approximately O(hp+1). Furthermore, as

demostrated by Figure 5-2(b), the higher-order solutions are dramatically more accurate

per degree of freedom (DOF). For the finest mesh, p = 1 solution, which has 3.38 × 104

DOF, the error is approximately 4.27 × 10−4, while the coarsest mesh, p = 3 solution has

only 7.04 × 103 DOF and gives an error of 2.36 × 10−4.

5.2 Circular Channel Flow

The goal of the second test case was to numerically verify that the discretization achieves

optimal order of accuracy for a problem with curved boundaries. The domain, shown in

Figure 5-3(a), is a 180o section of a circular channel. Figure 5-3(b) shows the coarsest grid

used, which contains 100 elements. Note that on the circular boundaries the geometry is

represented using a q = 2 Lagrange basis where the midpoint node on each boundary edge
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Figure 5-3: Domain for circular channel test case
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Figure 5-4: Accuracy results for 0 ≤ p ≤ 3 for circular channel test case

is located on the actual geometry.

As in Section 5.1, a source term is added to the right-hand side of the compressible

Navier-Stokes equations such that the exact solution to the equations is

u =





ρ

ρu

ρv

ρE




=





1

(r − ri)(r − ro) sin θ

(r − ri)(r − ro) cos θ

5 + 1
2
(r − ri)

2(r − ro)
2




.

Figures 5-4(a) and 5-4(b) show the L2-norm of the error versus number of elements and

DOF. As for the the straight channel Poiseuille flow problem, optimal order of accuracy is

observed, and the higher-order solutions are seen to provide significantly lower error with

fewer DOF. For p = 3, only 4000 DOF are required to achieve an error of 1.37×10−4, while

for p = 1, the error is 2.64 × 10−4 for 7.68 × 104 DOF.

While conducting this test, an unexpected phenomenon was observed. When using q = 3

geometry representation, the order of accuracy dropped from O(hp+1) to O(hp+1/2) for p = 2

and p = 3. While it is not clear at this time, this problem may be the result of oscillations in

the geometry interpolation. Figure 5-5 shows the radius error—the difference between the

interpolated radius and the exact radius—for a coarse grid element on the inner wall. The

radius error is plotted versus the location, σ, on the reference edge. Clearly, both the q = 2

and q = 3 interpolations produce oscillatory geometry. In fact, the q = 2 oscillations are

larger in amplitude. Yet, with q = 2 iterpolants, optimal accuracy is achieved. Further work
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in this area is necessary to fully understand the requirements on the geometry convergence

to achieve optimal order of accuracy. Specifically, it is unclear not only what norm of the

geometry error is appropriate but also what rate this norm should converge to guarantee

O(hp+1) convergence of the solution error.

5.3 NACA 0012 Airfoil

The last test case is that of M = 0.5, Re = 5000, laminar flow over a NACA 0012 airfoil at

α = 0o. Three sets of results are shown: accuracy results, iterative convergence results, and

timing results. A set of four structured grids was used to generate the data. The meshes

were created by modifying a baseline grid provided by Swanson [43].

The leading edge of the original Swanson mesh was refined by inserting points along

the airfoil. The points were used to create new elements having lower aspect ratios than

the original elements such that, when the boundary elements were converted from q = 1

to q = 3 by moving the higher-order points to the true airfoil surface, no negative area

elements were created. Then, to create a family of meshes with varying h, the mesh was

coarsened by removing every other node in both the streamwise and normal directions. The

coarsening procedure was repeated three times, resulting in four, nested meshes containing

672, 2688, 10752, and 43008 elements. The coarsest mesh is shown in Figure 5-6. On

the airfoil boundary, q = 3 elements were used. The boundary nodes were placed using a

modified version of the analytic definition of the NACA 0012:

y = ±0.6(0.2969
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4). (5.2)
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Figure 5-6: Coarse NACA 0012 grid, 672 elements

In Eqn. 5.2, the x4 coefficient of the traditional definition of the NACA 0012 has been

modified such that the trailing edge (x = 1) has zero thickness.

On the airfoil, the no slip, adiabatic boundary condition is used. At the exit plane,

the subsonic outflow condition is imposed, thus, the pressure is set to the freestream value.

Along the rest of the boundary, the full state condition is used, where the boundary state

is set to the freestream state.

Unless otherwise noted, all results were obtained using the multigrid solver with element-

line Jacobi smoothing. All computations were initialized from a fully converged p = 0

solution. When starting higher-order calculations, five V-cycles on each level were run

before prolongating to the next finer level, and each V-cycle contained four pre- and post-

smoothing iterations with 100 smoothing iterations on the coarsest level (p = 0).

5.3.1 Accuracy Results

The computed drag for each grid and interpolation order is shown in Figure 5-7. Figure 5-8

shows the drag versus DOF. For comparison, results computed by FUN2D, which uses a

node-centered finite volume algorithm, on the same meshes are shown. While it appears

that FUN2D may be converging to a different final answer for the drag, qualitatively, the

convergence of the FUN2D and p = 1 methods in terms of DOF is very similar.

However, the p = 2 and p = 3 results are dramatically better. On the 2688 element
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Figure 5-7: Drag versus number of elements
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Figure 5-8: Drag versus degrees of freedom
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grid, both the p = 2 (6.45× 104 DOF) and p = 3 (1.08× 105 DOF) drag results are within

0.1 drag counts of the finest grid, p = 3 result. Alternatively, the drag error for p = 1 on

the 43008 element mesh (5.16 × 105 DOF) is 0.3 drag counts. Thus, high-order solutions

provide significantly better accuracy in fewer DOF than p = 1 solutions on very refined

meshes.

It should be noted that in the results presented here, the drag error is not converging at

O(hp+1). While the p = 1 results are close—the convergence rate based on the p = 1, 10752

and 43008 element grids is 1.78—the p = 2 and p = 3 results are not. The loss of optimal

order of accuracy could be caused by many factors. First, as noted in Section 5.2, the

discretization is very sensitive to geometry errors. While a q = 3 geometry representation

was used, the interpolated geometry is oscillatory, and it is possible that the geometry

errors converging at suboptimal order of accuracy could be affecting the order of accuracy

of the solution. Second, the smoothness of the exact solution could be affecting the order

of accuracy. As is well known, the exact solution has a singularity at the trailing edge. No

effort has been made here to over-refine the trailing edge region, and, thus, this singularity

may be adversely affecting the convergence rate.

While the above factors appear to be the most likely culprits, many other problems

could be degrading the order of accuracy. For example, the boundary conditions have not

been thoroughly investigated, and the grid spacing does not vary smoothly throughout the

domain. Finally, it should be noted that, while optimal order of accuracy has been proven

for DG for linear hyperbolic and linear elliptic problems, no proof currently exists for the

Navier-Stokes equations.

5.3.2 Iterative Convergence Results

Iterative convergence results are shown in Figures 5-9 and 5-10. Residual convergence for

1 ≤ p ≤ 3 are shown for three meshes in Figure 5-9. The spikes clearly observable for p = 2

at five iterations and for p = 3 at both five and ten iterations are where the solver has

begun to run V-cycles on the next finer level.

As demonstrated in [22] for the Euler equations, the asymptotic convergence rate of the

residual is approximately independent of p. However, a slight h dependence is observed.

Thus, while the residual on the 672 element mesh is fully converged in less than 50 iterations,

the residual is approximately 10−8 after 50 iterations on the 10752 element mesh.

Figure 5-10 shows the drag history. At each iteration, the iterative drag error—the

difference between the drag at that iteration and the final converged drag for that case—is

plotted. Note that, unlike the residual convergence histories, only V-cycles on the finest
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Figure 5-9: Residual convergence history
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level are shown.

The results show that the drag converges to engineering tolerance much faster than the

residual converges to zero. In fact, the iterative drag error usually converges to less than

0.01 drag counts in less than 10 multigrid iterations on the finest level, and more than 15

are never required. In practice, this means that the calculation may be stopped before the

residual has converged to zero.
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Figure 5-11: Absolute drag versus CPU time

5.3.3 Timing Results

Two sets of timing results are presented: a comparison of the time required to compute

the drag to engineering tolerance using multigrid with element-line Jacobi smoothing for

varying p and h and a comparison of the time required to drive the residual to zero using

the element Jacobi smoother, element-line Jacobi smoother, multigrid with element Jacobi

smoothing, and multigrid with element-line Jacobi smoothing. All timing study calculations

were run on a single 3.0 gigahertz Intel Pentium 4 processor with 896 megabytes of memory.

Figure 5-11 shows the time required to compute the drag using multigrid with element-

line Jacobi smoothing for varying p and h, and Figure 5-12 shows the drag error versus

time, where drag error is the difference between the drag for a given case and the p =

3 result on the 43008 element grid. The values plotted were obtained using a drag

based stopping criterion. Namely, when the change in the drag for one iteration was less

that 0.01 drag counts, 10000|cn+1
d − cn

d | < 0.01, for four iterations, the calculation was

stopped and the drag and time were plotted. This stopping criterion is intended to minimize

the computational time required to compute the drag given the knowledge that the drag

converges to engineering tolerance faster than the residual converges to zero. Furthermore,

it is intended to simulate engineering practices in that it does not require knowledge of the

final, converged drag.

Clearly, the higher-order solutions give smaller error in less time than the p = 1 solution.

It takes approximately 2.98×105 seconds to obtain the most accurate p = 1 solution, which

has an error of 0.32 drag counts. Alternatively, the coarsest p = 2 solution has an error of
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Figure 5-12: Drag error versus CPU time

0.29 counts and was obtained in only 548 seconds.

Figure 5-13 compares the four solvers developed in this work: element Jacobi, element-

line Jacobi, multigrid with element Jacobi smoothing, and multigrid with element-line Ja-

cobi smoothing. As expected, the figure shows that the incorporation of the element-line

Jacobi smoother significantly improves the performance of the solver. Thus, the element-line

Jacobi solver is more efficient than the element Jacobi solver, and multigrid with element-

line Jacobi smoothing is more efficient that multigrid with element Jacobi smoothing for

all p. Furthermore, in all cases, multigrid with element-line Jacobi smoothing is the best

solver, and, as p increases, it becomes relatively more efficient. For p = 1, the multigrid

with element-line Jacobi smoothing is only slightly more efficient than pure element-line Ja-

cobi. After 3000 seconds, the residual is approximately one order of magnitude lower using

multigrid. However, for p = 3 the element-line Jacobi and multigrid with element Jacobi

schemes both reduce the residual to approximately 10−3 in 8000 seconds while multigrid

with element-line Jacobi drives the residual to 10−9 in the same time.
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Figure 5-13: Solver comparison for 2688 element mesh
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Chapter 6

Conclusions

In an effort to advance the state of the art in CFD in applied aerodynamics, a high-order

algorithm for the compressible Navier-Stokes equations was presented. The algorithm em-

ploys a DG discretization with an element-compact stencil and a p-multigrid solver with

element-line Jacobi smoothing.

The discretization has been shown to achieve optimal order of accuracy for simple test

problems. While optimal order of accuracy was not obtained for the more practical airfoil

problem, the higher-order discretizations were shown to provide significantly less error with

fewer elements and DOF than second-order discretizations. Furthermore, timing studies

showed that the reductions in elements and DOF translated into savings in computational

time required to compute the drag to within 0.5 drag counts of an order of magnitude or

more.

Via Fourier analysis of convection-diffusion, the element and element-line Jacobi smoothers

were shown to be stable independent of order. Furthermore, the residual convergence rate

was observed to be independent of order and only weakly dependent on grid spacing when

using multigrid with element-line Jacobi smoothing. A timing study on the NACA 0012

test case using all four solvers confirmed that, especially for higher-order discretizations,

multigrid with element-line Jacobi smoothing is the most efficient solution technique.

While these results are encouraging, much work remains. First, the 2-D viscous dis-

cretization must be extended to the 3-D case. Second, the geometry representation issue

highlighted by the circular cylinder test case must be resolved. To obtain high-order ac-

curacy for general problems, a complete understanding of the geometry representation and

gridding requirements is crucial. Third, turbulence modeling and limiting capabilities must

be added to allow consideration of a wider range of flows of engineering interest. In terms

of turbulence modeling, the first model considered will be Spalart-Allmaras as this model

is widely used in aerospace applications. In terms of limiting, although it is not yet clear,
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the most attractive approach may be hp-adaptivity where in the vicinity of a shock h and

p are lowered to avoid oscillations in the solution. One hurdle in the introduction of such a

limiter is the development of a robust shock detection scheme such that h and p are lowered

near the shock but high-order accuracy is maintained in smooth regions.

Finally, optimization is required to make the method practical. This work will entail

not only optimization of the current implementation but possibly also the introduction of

approximations to lessen the impact of expensive computations. For example, in the current

implementation, the block diagonal of the Jacobian is inverted for every element at every

iteration. Especially for higher-order, 3-D calculations, this inversion requires significant

computational work. Thus, if an approximate inverse could be introduced without severly

degrading the convergence rate, significant savings could be obtained. Work in this area

has already begun.
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